Python-ELMO is a Python library which offers an encapsulation of the binary tool ELMO, in order to manipulate it easily in Python and SageMath script.
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

engine.py 8.8KB

  1. import numpy as np
  2. import os
  3. def hweight(n):
  4. c = 0
  5. while n>0:
  6. c += (n & 1)
  7. n >>= 1
  8. return c
  9. def hdistance(x,y):
  10. return hweight(x^y)
  11. def binary_writing(n, nb_bits=32, with_hamming=False):
  12. n = np.array(n)
  13. w, h = np.zeros((nb_bits, len(n))), np.zeros((len(n)))
  14. for ind in range(nb_bits):
  15. w[ind] = (n & 1)
  16. h += w[ind]
  17. n >>= 1
  18. ind += 1
  19. return (w, h) if with_hamming else w
  20. PREVIOUS = 0
  21. CURRENT = 1
  22. SUBSEQUENT = 2
  23. class ELMOEngine:
  24. def __init__(self):
  25. self.load_coefficients()
  26. self.reset_points()
  27. def _extract_data(self, nb):
  28. coeffs = self.coefficients[self.pos:self.pos+nb]
  29. self.pos += nb
  30. return coeffs
  31. def load_coefficients(self):
  32. filename = os.path.dirname(os.path.abspath(__file__))+'/elmo/coeffs.txt'
  33. self.coefficients = None
  34. with open(filename, 'r') as _file:
  35. self.coefficients = np.array([list(map(float, line.split())) for line in _file.readlines()[:2153]])
  36. if self.coefficients is None:
  37. raise IOError('Problem to read the coefficients.')
  38. self.pos = 0
  39. self.constant = np.squeeze(self._extract_data(1))
  40. self.PrvInstr = self._extract_data(4)
  41. self.SubInstr = self._extract_data(4)
  42. self.Operand1 = self._extract_data(32)
  43. self.Operand2 = self._extract_data(32)
  44. self.BitFlip1 = self._extract_data(32)
  45. self.BitFlip2 = self._extract_data(32)
  46. self.HWOp1PrvInstr = self._extract_data(4)
  47. self.HWOp2PrvInstr = self._extract_data(4)
  48. self.HDOp1PrvInstr = self._extract_data(4)
  49. self.HDOp2PrvInstr = self._extract_data(4)
  50. self.HWOp1SubInstr = self._extract_data(4)
  51. self.HWOp2SubInstr = self._extract_data(4)
  52. self.HDOp1SubInstr = self._extract_data(4)
  53. self.HDOp2SubInstr = self._extract_data(4)
  54. self.Operand1_bitinteractions = self._extract_data(496)
  55. self.Operand2_bitinteractions = self._extract_data(496)
  56. self.BitFlip1_bitinteractions = self._extract_data(496)
  57. self.BitFlip2_bitinteractions = self._extract_data(496)
  58. def reset_points(self):
  59. self.points = []
  60. self.power = None
  61. def add_point(self, triplet, previous_ops, current_ops):
  62. self.points.append((triplet, previous_ops, current_ops))
  63. def _dot(self, a, b):
  64. return np.sum(a * b, axis=0)
  65. def calculate_point(self, triplet, previous_ops, current_ops, debug=False):
  66. nb_points = triplet.shape[1]
  67. instructiontype = triplet[CURRENT]
  68. instructiontype = instructiontype % 5 # Type 5 = Instruction was not profiled
  69. # Previous
  70. previous_instruction_typedec = triplet[PREVIOUS]
  71. previous_instruction_type = np.zeros((5, nb_points))
  72. for i in range(nb_points):
  73. if previous_instruction_typedec[i] < 5:
  74. previous_instruction_type[previous_instruction_typedec[i],i] = 1
  75. # Current
  76. (current_op1_binary, hw_op1) = binary_writing(current_ops[0], with_hamming=True)
  77. (current_op2_binary, hw_op2) = binary_writing(current_ops[1], with_hamming=True)
  78. (current_op1_bitflip, hd_op1) = binary_writing(previous_ops[0] ^ current_ops[0], with_hamming=True)
  79. (current_op2_bitflip, hd_op2) = binary_writing(previous_ops[1] ^ current_ops[1], with_hamming=True)
  80. current_instruction_typedec = instructiontype
  81. current_instruction_type = np.zeros((5, nb_points))
  82. for i in range(nb_points):
  83. if triplet[CURRENT,i] < 5:
  84. current_instruction_type[current_instruction_typedec[i],i] = 1
  85. # Subsequent
  86. subsequent_instruction_typedec = triplet[SUBSEQUENT]
  87. subsequent_instruction_type = np.zeros((5, nb_points))
  88. for i in range(nb_points):
  89. if subsequent_instruction_typedec[i] < 5:
  90. subsequent_instruction_type[subsequent_instruction_typedec[i],i] = 1
  91. # Component variables
  92. PrvInstr_data = self._dot( previous_instruction_type[1:], self.PrvInstr[:,instructiontype] )
  93. SubInstr_data = self._dot( subsequent_instruction_type[1:], self.SubInstr[:,instructiontype] )
  94. Operand1_data = self._dot( current_op1_binary, self.Operand1[:,instructiontype] )
  95. Operand2_data = self._dot( current_op2_binary, self.Operand2[:,instructiontype] )
  96. BitFlip1_data = self._dot( current_op1_bitflip, self.BitFlip1[:,instructiontype] )
  97. BitFlip2_data = self._dot( current_op2_bitflip, self.BitFlip2[:,instructiontype] )
  98. HWOp1PrvInstr_data = hw_op1 * self._dot(previous_instruction_type[1:], self.HWOp1PrvInstr[:,instructiontype])
  99. HWOp2PrvInstr_data = hw_op2 * self._dot(previous_instruction_type[1:], self.HWOp2PrvInstr[:,instructiontype])
  100. HDOp1PrvInstr_data = hd_op1 * self._dot(previous_instruction_type[1:], self.HDOp1PrvInstr[:,instructiontype])
  101. HDOp2PrvInstr_data = hd_op2 * self._dot(previous_instruction_type[1:], self.HDOp2PrvInstr[:,instructiontype])
  102. HWOp1SubInstr_data = hw_op1 * self._dot(subsequent_instruction_type[1:], self.HWOp1SubInstr[:,instructiontype])
  103. HWOp2SubInstr_data = hw_op2 * self._dot(subsequent_instruction_type[1:], self.HWOp2SubInstr[:,instructiontype])
  104. HDOp1SubInstr_data = hd_op1 * self._dot(subsequent_instruction_type[1:], self.HDOp1SubInstr[:,instructiontype])
  105. HDOp2SubInstr_data = hd_op2 * self._dot(subsequent_instruction_type[1:], self.HDOp2SubInstr[:,instructiontype])
  106. Operand1_bitinteractions_data = np.zeros((nb_points))
  107. Operand2_bitinteractions_data = np.zeros((nb_points))
  108. BitFlip1_bitinteractions_data = np.zeros((nb_points))
  109. BitFlip2_bitinteractions_data = np.zeros((nb_points))
  110. count = 0
  111. for i in range(32):
  112. for j in range(i+1,32):
  113. Operand1_bitinteractions_data += self.Operand1_bitinteractions[count,instructiontype] * current_op1_binary[i] * current_op1_binary[j]
  114. Operand2_bitinteractions_data += self.Operand2_bitinteractions[count,instructiontype] * current_op2_binary[i] * current_op2_binary[j]
  115. BitFlip1_bitinteractions_data += self.BitFlip1_bitinteractions[count,instructiontype] * current_op1_bitflip[i] * current_op1_bitflip[j]
  116. BitFlip2_bitinteractions_data += self.BitFlip2_bitinteractions[count,instructiontype] * current_op2_bitflip[i] * current_op2_bitflip[j]
  117. count += 1
  118. power = self.constant[instructiontype] \
  119. + PrvInstr_data + SubInstr_data \
  120. + Operand1_data + Operand2_data \
  121. + BitFlip1_data + BitFlip2_data \
  122. + HWOp1PrvInstr_data + HWOp2PrvInstr_data \
  123. + HDOp1PrvInstr_data + HDOp2PrvInstr_data \
  124. + HWOp1SubInstr_data + HWOp2SubInstr_data \
  125. + HDOp1SubInstr_data + HDOp2SubInstr_data \
  126. + Operand1_bitinteractions_data + Operand2_bitinteractions_data \
  127. + BitFlip1_bitinteractions_data + BitFlip2_bitinteractions_data
  128. for i in range(nb_points):
  129. if triplet[CURRENT,i] == 5:
  130. power[i] = self.constant[triplet[CURRENT,i]]
  131. if debug:
  132. print([self.constant[instructiontype], \
  133. PrvInstr_data, SubInstr_data, \
  134. Operand1_data, Operand2_data, \
  135. BitFlip1_data, BitFlip2_data, \
  136. HWOp1PrvInstr_data, HWOp2PrvInstr_data, \
  137. HDOp1PrvInstr_data, HDOp2PrvInstr_data, \
  138. HWOp1SubInstr_data, HWOp2SubInstr_data, \
  139. HDOp1SubInstr_data, HDOp2SubInstr_data, \
  140. Operand1_bitinteractions_data, Operand2_bitinteractions_data, \
  141. BitFlip1_bitinteractions_data, BitFlip2_bitinteractions_data])
  142. return power
  143. def run(self):
  144. nb_points = len(self.points)
  145. triplet = np.array([p[0] for p in self.points]).T # shape = (3, nb_points)
  146. previous_ops = np.array([p[1] for p in self.points]).T # shape = (2, nb_points)
  147. current_ops = np.array([p[2] for p in self.points]).T # shape = (2, nb_points)
  148. self.power = self.calculate_point(triplet, previous_ops, current_ops)
  149. def oneshot_point(self, triplet, previous_ops, current_ops):
  150. self.reset_points()
  151. self.add_point(triplet, previous_ops, current_ops)
  152. self.run()
  153. return self.power